In recent years, exploits like speculative execution, Rowhammer, and Return Oriented Programming (ROP) were detected using hardware performance counters (HPCs). But to date, only relatively simple and well-understood counters have been used, representing just a tiny fraction of the information we can glean from the system. What's worse, using only well-known counters as detectors for these attacks has a huge disadvantage - an attacker can easily bypass known counter-based detection techniques with minimal changes to existing sample exploit code.
If we want a viable future for exploit detection, we need to move beyond just scratching the surface of the HPC iceberg. Uncovering the treasure trove of overlooked and undocumented counters is necessary if we are to both build defenses against these attacks and anticipate how an adversary could bypass our defenses.
We'll begin our journey in walking through our ML-based solution to more effective exploit detection. Using the entire corpus of performance counters for commonly used baseline programs and behaviorally-similar malicious programs, we zero in on the counters we want to use as features for our supervised classifiers. We will then interpret our model to determine how they can effectively detect various exploits using novel performance counters.
Finally, we'll showcase the uncommon and previously ignored performance counters that were lurking in the dark, with so much useful information. The results seen here will emphasize the need for documenting these counters, which were highly significant in our models for attack detection.